• Украина
    • Москва
    • Краснодар
    • Симферополь
    • Беларусь
    • Молдова
  • Мобильные
  • Заказать звонок
+7 861 217-66-18многоканальный тел./факс
+7 916 555-58-43
Ваш телефон успешно отправлен.
С вами скоро свяжутся.
+7 978 797-58-57
+7 495 128-58-43
+375 29 103-13-15
+373 022 28-19-66
+7 861 217-66-18

WPML not installed and activated.

Что такое режим стагнации, почему он происходит, как влияет на систему?

Стагнация (фр. stagnation, от лат. stagno — делаю неподвижным, останавливаю; лат. stagnum — стоячая вода). Режим, при котором прекращается проток теплоносителя по контуру гелиосистемы. Отсутствие расхода в гелиоконтуре может возникнуть по нескольким причинам:

  • отсутствует электроснабжение на циркуляционном насосе (до 30 минут), при высокой солнечной активности.
  • выход из строя циркуляционного насоса.
  • засорение контура сторонними элементами.
  • воздушная пробка в контуре.
  • разгерметизация контура, низкое давление.
  • не правильно настроенный или вышедший из строя контроллер.
  • действия третьих сил (например, случайное перекрытие запорной арматуры на контуре).

При высокой солнечной инсоляции, отсутствие расхода, приводит к росту температуры коллектора до наступления теплового равновесия, когда выработка тепловой энергии соответствует тепловым потерям в текущий момент времени, при этом, как правило, температура стагнации намного превышает температуру кипения теплоносителя. Режим стагнации в гелиосистеме, сопровождается повышением давления и ростом температуры (в зависимости от коллектора и может достигать 250С). При высокой температуре, теплоноситель в коллекторе начинает превращаться в пар. При этом, возникающее избыточное давление компенсируемое расширительным баком, который обязательно устанавливается в любой системе с закрытым контуром. Солнечные коллекторы от компании ATMOSFERA и другие компоненты гелиосистем рассчитаны на работу при высоких температурах в режиме стагнации. Но следует учесть, что при многократно перегреве теплоносителя может деградировать (вплоть до образования твердых фракций), его химический состав меняется и приводит к менее эффективной работе системы или выходу ее из строя. При частых режимах стагнации особенно тщательно нужно следить за состоянием и характеристиками теплоносителя. Для предотвращения наступления режима стагнации часто используют системы утилизации избыточного тепла. Фаза процесса стагнации описаны ниже:

I Фаза – Температурное расширение теплоносителя

I фаза – Температурное расширение теплоносителя

Данная фаза продолжается то начала первичного парообразование, рост давления в системе происходит за счет температурного расширения теплоносителя (для пропиленгликоля 8,48%). Давление при этом повышается на 1 Атм.

II фаза - Парообразование теплоносителя

II фаза — Парообразование теплоносителя

Температура теплоносителя достигает температуры кипения (зависит от давления в системе). Образуется пар, давление возрастает еще на 1 Атм.

III фаза - Кипение теплоносителя в коллекторе

III фаза — Кипение теплоносителя в коллекторе

Обильное парообразование, до полного вытеснение жидкого теплоносителя из теплообменника коллектора. Сопровождается ростом давления и температуры.

IV фаза - Режим устойчивого перегрева

IV фаза — Режим устойчивого перегрева

Собственно режим стагнации – режим теплового равновесия. Тепловые потери на коллекторе равны производительности коллектора.

V фаза - Режим конденсации

V фаза — Режим конденсации

Температура паровой смеси опускается (на коллектор поступает меньше солнечной энергии – затенение, изменение условий окружающей среды) и достигает температуры конденсации (температуры фазового перехода), теплоноситель переходи опять в жидкое состояние.